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Abstract. We describe three different approaches to the extended (N = 2) supersymmetrization
of the multicomponentKP hierarchy. In the first one we utilize only superfermions while in the
second only superbosons and in the third superbosons as well as superfermions. It is shown that
many soliton equations can be embedded in the supersymmetry theory by using the first approach
even if we do not change these equations in the bosonic limit of the supersymmetry. In the
second or third approach we obtain a generalization of the soliton equations in the bosonic limit
which remains in the class of the usual commuting functions. As a byproduct of our analysis
we prove that for the first procedure the bosonic part of the one-component supersymmetricKP

hierarchy coincides with the usual classical two-componentKP hierarchy.

1. Introduction

Integrable Hamiltonian systems occupy an important place in diverse branches of theoretical
physics as exactly solvable models of fundamental physical phenomena ranging from
nonlinear hydrodynamics to string theory [1–3]. The general Kadomtsev–Petviashvilli
(KP) system [4, 5] is a(1 + 1)-dimensional integrable model containing an infinite number
of fields. In the Sato approach [6–8], theKP hierarchy is described by the isospectral
deformations of the eigenvalue problemL9 = λψ for the pseudodifferential operator
L = ∂ + U2∂

−1 + U3∂
−2 which is given by

Ltn = [Bn,L] (1)

wheren = 2, 3, . . . andBn is the differential part of the microdifferential operatorLn. If
we require thatL satisfies the additional condition thatLn = Bn, n > 2 then the hierarchy
of equations given by (1) are reduced to the hierarchy of(1 + 1)-dimensional integrable
systems called then-reducedKP hierarchy. For example, the Korteweg–de Vries equation
and the Boussinesq equation belong to the two-reduced and three-reducedKP hierarchies,
respectively.

On the other hand, a new type of reduction has recently been proposed in a series of
articles, which reduces many(2+1)-dimensional integrable systems to(1+1)-dimensional
integrable systems [9–15]. For example, by assuming thatL satisfies the constraints

Ln = Bn + q∂−1r (2)

we can obtain the so-calledk-constrainedKP hierarchy. Interestingly, the one-constrained
KP hierarchy coincides with theAKNS hierarchy, and the two-constrainedKP hierarchy
coincides with the Yajima–Oikawa [16] hierarchy. Thek-constrainedKP hierarchy was
shown to possess Lax pairs, recursion operators and bi-Hamiltonian structures [15].
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However, this classification does not exhaust the known generalizations of theKP

hierarchies. In this paper we consider two different generalizations of theKP hierarchies.
In the next section we describe the so-called multicomponentKP hierarchy and in the
succeeding sections we consider the extended supersymmetrization of the multicomponent
KP hierarchies.

The idea of using extended supersymmetry (SUSY) for the generalization of the soliton
equations appeared almost in parallel to the usage ofSUSY in the quantum field theory
[17, 18]. The main idea ofSUSY is to treat boson and fermion operators equally. The first
results, concerned the construction of classical field theories with fermionic and bosonic
fields depending on time and one space variable, can be found in [19–22]. In many cases,
the addition of fermion fields does not guarantee that the final theory becomesSUSYinvariant.
Therefore this method was named the fermionic extension in order to distinguish it from
the fully SUSY method.

In order to get aSUSY theory we have to add to a system ofk bosonic equations
kN fermions andk(N − 1) boson fields (k = 1, 2, . . . , N = 1, 2, . . .) in such a way
that the final theory becomesSUSY invariant. Interestingly enough, it appeared that during
the supersymmetrizations, some typicalSUSY effects (compared with the classical theory)
occurred. We mention a few of them: the non-uniqueness of the roots for theSUSY Lax
operator [36, 40], the lack of bosonic reduction to the classical equations [35] and the
occurence of non-local conservation laws [49, 50]. These effects rely strongly on the
descriptions of the generalized classical systems of equations which we would like to
supersymmetrize.

From the soliton point of view we can distinguish two important classes of the
supersymmetric equations: the non-extended (N = 1) and extended(N > 1) cases.
Consideration of the extended case may imply new bosonic equations whose properties
need further investigation. This may be viewed as a bonus, but this extended case is in
no way more fundamental than the non-extended one. Indeed, as we show in this paper, it
is possible to construct such an extended superymmetric equation which does not contain
any new information in the bosonic sector compared with the original non-supersymmetric
equation. We carry out the supersymmetrization of the one-componentKP hierarchy in
two different ways. We show that despite using superfermions in the first approach for
the supersymmetrization of the one-componentKP hierarchy, the bosonic sector coincides
with the usual classical two-componentKP hierarchy. Interestingly, the bosonic part of the
SUSY Lax pair of the one-componentKP hierarchy is a matrix-valued operator, in contrast
to the scalar Lax operator in the classical case. Therefore we can claim that we also
supersymmetrized the two-componentKP hierarchy without any new information in the
bosonic sector. We show that in the second case, where we use superbosons, we extend
our system to the new bosonic system.

The paper is organized as follows. In section 2 we describe the multicomponentKP

hierarchy. Section 3 contains an introduction to the supersymmetrization of this hierarchy
which is developed in the sections that follow. In section 4 we describe the superfermionic
approach, while in section 5 we describe the superbosonic approach. We use superfermions
as well as superbosons in section 6 in the supersymmetrization of our multicomponentKP

hierarchy in order to demonstrate the third (mixed) possibility. Section 7 contains concluding
remarks.

All calculations presented in this paper have been obtained by extensive application of
the symbolic computation languageREDUCE.
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2. The multicomponent KP hierarchy

The multicomponentKP hierarchy was introduced by Sidorenko and Strampp [14], and is
a straightforward generalization of the scalar case. This is a hierarchy associated with the
following Lax operator:

Ln = ∂n + un−2∂
n−2 + · · · + u0 +

m∑
u=1

qi∂
−1ri (3)

The corresponding flows can be constructed by means of the fractional power
method [5]. Forn = 1, one has the multicomponentAKNS hierarchy, which includes
the coupled nonlinear Schrödinger equation [51] as an example. Forn = 2 andn = 3 one
has the multicomponent Yajima–Oikawa [16] and Melnikov [52] hierarchies, respectively.
We consider first the multicomponentAKNS hierarchy, which is given by

L = ∂ +
n∑
i=1

qi∂
−1ri (4)

where the flows are

Ltk =
[(
Lk

)
+ , L

]
. (5)

The bi-Hamiltonian structure of these equations has been widely discussed in the
literature recently [14, 51, 52] and it has the following representation:

qtk = B0 δHk+1

δq
= B1 δHk

δq
(6)

whereq = (q1, q2, . . . , qn, r1, r2, . . . , rn) and

B0 =
(
O I

−I O

)
(7)

whereI is them×m identity matrix.B1 has [54] the form

B1 =
(
B1

11 B1
12

B1
21 B1

22

)
(8)

where theB1
n,k(n, k = 1, 2) arem×m matrices with the elements

B1
11 = {

qi∂
−1qj + qj∂

−1qi
}

B1
12 =

{(
∂ −

m∑
s=1

qs∂
−1rs

)
δij − qi∂

−1rj

}
(9)

(B1
12)

∗ = −B1
21 B1

22 = {
ri∂

−1rj + rj ∂
−1ri

}
(10)

and∗ denotes Hermitian conjugation. In the special casem = 1 we obtain

B1 =
(

2q∂−1q ∂ − 2q∂−1r

∂ − 2r∂−1q 2r∂−1r

)
(11)

Interestingly, this Hamiltonian operator can be considered as the outcome of the
Dirac reduction of the Hamiltonian operator connected with theSL(2, C) Kac–Moody
algebra [39].

The HamiltoniansHk may be computed from

Hk = 1

k
Res

(
Lk

)
(12)

where Res denotes the coefficient standing in the∂−1 term.
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For the subsequent discussion let us explicitly present equations (6) for the two-
componentKP hierarchy in two particular cases.

For k = 2 these equations are in the form

qit = qixx + 2qi
m∑
i=1

qsrs (13)

rit = −rixx − 2ri
m∑
i=1

qsrs . (14)

This is a vector generalization of the nonlinear Schrödinger equation first considered in [49].
For k = 3

qit = qixxx + 3qi
m∑
s=1

qsxrs + 3qix
m∑
s=1

qsrs (15)

rit = rixxx + 3ri
m∑
s=1

qsrsx + 3rix
m∑
s=1

qsrs . (16)

These equations can be further restricted to the known soliton equation. Indeed, assuming
that m = 1 we obtain the result that equations (12), (13) reduce to the usual nonlinear
Schr̈odinger equation, while equations (14), (15) forq = r reduce to the modified
Korteweg–de Vries equation or forr = 1 to the Korteweg–de Vries equation.

3. The extended supersymmetrization of the multicomponentKP hierarchy

The basic objects in the supersymmetric analysis are the superfield and the supersymmetric
derivative. We will deal with the so-called extendedN = 2 supersymmetry for which the
superfields are superfermions or superbosons that, in addition tox and t , depend upon two
anticommuting variables,θ1 andθ2, (θ2θ1 = −θ1θ2, θ

2
1 = θ2

2 = 0). Their Taylor expansion
with respect to theθ ’s is

φ(x, θ1, θ2) = w(x)+ θ1ζ1(x)+ θ2ζ2(x)+ θ2θ1u(x) (17)

where the fieldsw, u, are to be interpreted as the boson (fermion) fields for the superboson
(superfermion) fieldζ1, ζ2, and as the fermions (bosons) for the superboson (superfermion)
respectively. The superderivatives are defined as

D1 = ∂θ1 + θ1∂ D2 = ∂θ2 + θ2∂ (18)

with the properties

D2D1 + D1D2 = 0 D2
1 = D2

2 = 0. (19)

Below we shall use the following notation:(DiF ) denotes the outcome of the action
of the superderivative on the superfieldF , while DiF denotes the action itself of the
superderivative on the superfieldF .

The principal problem in the supersymmetrization of soliton equations can be formulated
as follows: if we know the evolution equation for the classical functionu and its
(bi-)Hamiltonian structure or its Lax pair, how can we obtain the evolution equation on
the supermultiplet8 which contains the classical functionu? This problem has its own
history, and at the moment we have no unique solution. We can distinguish three different
methods for its supersymmetrization, namely the algebraic, geometric and direct methods.
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In the first two cases we are looking for the symmetry group of the given equation and
then we replace this group by the correspondingSUSY group. As a final product we are
able to obtain theSUSY generalization of the given equation. Their classification into the
algebraic or geometric approach is connected with the kind of symmetry that appears at
the classical level. For example, if our classical equation can be described in terms of the
geometrical object, then the simple exchange of the classical symmetry group of this object
onto theSUSY partner justifies the term geometric. In the algebraic case, we are looking
for the symmetry group of this equation without any reference to its geometrical origin.
This strategy can be applied to the so-called hidden symmetry, as in the case of the Toda
lattice [56], for example.

These methods have both advantages and disadvantages. For example, we sometimes
obtain only the fermionic extensions of the given equations [44, 56]. In the case of the
extended supersymmetric Korteweg–de Vries equation we have three different fullySUSY

extensions; however, only one of them fits these two classifications [26–28, 31].
It seems that the most difficult problem in these approaches is the explanation of why

a priori a SUSY extension of the classical system of equations should be connected with
the SUSY extension of the classical symmetry of these equations. For these reasons we
prefer to use the direct approach in which we simply replace all objects which appear in
the evolution equation by all possible supermultiplets and superderivatives in such a way
as to conserve the gradations of the equation. This is a highly non-unique procedure, and
we obtain many different possibilities. However, this arbitrariness can be restricted if in
addition we investigate its super-bi-Hamiltonian structure or try to find its supersymmetric
Lax pair. This method has been successful in many cases [34, 35, 40–48]. We utilize this
method in what follows.

Let us now start trying to find the Lax operator for the multicomponentSUSY

KP hierarchy. The direct method suggests that we assume thatL depends on the
vector supermultipletsF , G, its supersymmetric derivatives and on the derivative and
superderivatives in such a way that finally it has the gradation 1. Therefore we postulate
that the Lax pair is an operator in the form

L = L (∂,D1,D2, F,G) . (20)

In order to specify this form we have to assume the gradations of the supermultipletsF

andG. However, we quickly recognize that we encounter three different possibilities of
the gradations ofF , G:

(i) All F , G are superfermions with the gradation 1/2.
(ii) All F , G are superbosons with the following gradation:F has 0 whileG has 1 (or

symmetrically).
(iii) A mixture of both previous possibilities: in other words some of theF andG are

superbosons and the rest are superfermions.

In the following sections we investigate these possibilities in greater detail.

4. The superfermionic approach

We now assume that the components of the vectors supermultipletsF and G are
superfermions which can be written down as

Fi = ζ 1
i + θ1f

1
i + θ2f

2
i + θ2θ1ζ

2
i (21)

Gi = η1
i + θ1g

1
i + θ2g

2
i + θ2θ1η

2
i (22)
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wheref ij , g
k
i are the usual classical functions whileζ kj , η

k
i are Grassmann-valued functions.

We choose the Lax operator in such a way that it contains all possible combinations of
‘variables’ in (20), in such a manner that each term has gradation 1. Then using the
symbolic languageREDUCE we verified that the following operator:

L = ∂ +
k∑
i=1

Fi · ∂−1 ·D1 ·D2 ·Gi (23)

generates the extended supersymmetric multicomponentKP hierarchy. Indeed, its second
flow is

Fit = Fixx + 2
k∑
s=1

Fs (D1D2GsFi)− Fi

( k∑
s=1

FsGs

)2

(24)

Git = Gixx + 2
k∑
s=1

Gs (D1D2GiFs)+Gi

( k∑
s=1

FsGs

)2

(25)

while the third is

Fit = Fixxx + 3
k∑

j=1

{ (D1D2GjFix
) + (D1D2GjFi

)
Fjx

−
k∑
l=1

[(D1GjFl
)
(D1GlFi) Fj + (D2GjFl

)
(D2GlFi) Fj

] }
− 3FixZ (26)

Git = Gix + 3
k∑

j=1

{ (D1D2GixFj
) +Gj

(D1D2GiFj
)
Gjx

+
k∑
l=1

(D1GiFj
)
(D1GiFl)Gl + (D2Gi)

(D2GjFl
)
Gl

}
− 3GixZ (27)

where

Z =
k∑

i,j=1

FiGiFjGj . (28)

Let us now discuss several particular cases of equations (24)–(27). Fork = 1, equations
(24), (25) reduce to

Ft = Fxx + 2F (D1D2GF) (29)

Gt = −Gxx − 2G(D1D2GF) . (30)

In the components, using (21), (22), we obtain the result that equations (29), (30) are
equivalent to

ζ 1
t = ζ 1

xx + 2ζ 1
(
η1ζ 2 + f 1g2 − f 2g1

)
(31)

f 1
t = f 1

xx − 2ζ 1
(
g2ζ 1 − f 2η2

)
x
+ 2f 1

(
η1ζ 2 + η2ζ 1 + f 1g2 − f 2g1

)
(32)

f 2
t = f 2

xx + 2ζ 1
(
g1ζ 1 − f 1η1

)
x
+ 2f 2

(
η1ζ 2 + η2ζ 1 + f 1g2 − f 2g1

)
(33)
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ζ 2
t = ζ 2

xx − 2ζ 1
(
η1ζ 1

)
xx

+ 2f 1
(
g1ζ 1 − f 1η1

)
x

+2f 2
(
g2ζ 1 − f 2η1

)
x
+ 2ζ 2

(
η2ζ 1 + f 1g2 − f 2g1

)
(34)

η1
t = −η1

xx − 2η1
(
η2ζ 1 + f 1g2 − f 2g1

)
(35)

g1
t = −g1

xx + 2η1
(
g2ζ 1 − f 2η1

)
x
− 2g1

(
η1ζ 2 + η2ζ 1 + f 1g2 − f 2g1

)
(36)

g2
t = −g2

xx − 2η1
(
g1ζ 1 − f 1η1

)
x
− 2g2

(
η1ζ 2 + η2ζ 1 + f 1g2 − f 2g1

)
(37)

η2
t = −η2

xx + 2η1
(
η1ζ 1

)
xx

− 2g1
(
g1ζ 1 − f 1η1

)
x

−2g2
(
g2ζ 1 − f 2η1

)
x
+ 2η2

(
η1ζ 2 + f 1g2 − f 2g1

)
. (38)

As we can see, this system of equations can be interpreted as the extended
supersymmetric nonlinear Schrödinger equation, which has been extensively discussed
recently [36–41, 48]. The bosonic part (in which all fermion fields vanish) gives us
equations (7) form = 2 with the following identifications:

f 1 = g1 f 2 = g2 q1 = −r2 q2 = r1. (39)

Interestingly, our Lax operator in the bosonic limit fork = 1 does not reduce to the scalar
Lax pair (4). In our case, it has a matrix form

L =
(
∂ + q1∂

−1r1 q1∂
−1r2

q2∂
−1r1 ∂ + q2∂

−1r2

)
. (40)

In this way, we have shown that our one-component extended supersymmetricKP

hierarchy in the bosonic sector is equivalent to the usual two-componentKP hierarchy.
Moreover, in this bosonic sector, our equations constitute the bi-Hamiltonian structure given
by (6)–(11), but we are not able to find its supersymmetric bi-Hamiltonian counterparts. As
shown in section 3, it was possible using the Dirac reduction technique with theSL(2, C)
Kac–Moody algebra to obtain the Hamiltonian operator for theAKNS hierarchy. In the
supersymmetric case the situation is more complicated. Indeed it was shown in [58] that it
is possible to construct the chiral version of theN = 2 SUSYSL(2, C) Kac–Moody algebra.
However, this chiral version cannot be applied to our framework, because we do not use
chiral fields. Moreover, the application of the direct method to the supersymmetrization
of equation (11) or to theSL(2, C) Kac–Moody algebra does not give us the correct
solution, a fact we have checked using the symbolic computation programREDUCE (see
also [30, 40, 48]).

On the other hand, our equations are Hamiltonian equations which can be written as

(
F

G

)
tk

=
(

0 I

−I 0

) 
δHk

δF

δHk

δG

 (41)

whereF = (F1, F2, . . . , Fk)
t , G = (G1,G2, . . . , Gk)

t andI is ak× k identity matrix. The
HamiltoniansHk can be computed by using equation (12) in which Res now denotes the
coefficient standing in the∂−1D1D2 term.

Let us now discuss equations (26), (27) fork = 1. In this case they reduce to

Ft = Fxxx + 3[(D1D2GFx) F + (D1D2GF)Fx ] (42)

Gt = Gxxx + 3[(D1D2GxF)G+ (D1D2GF)Gx ] (43)



1288 Z Popowicz

with the following bosonic sector:

f1t = f1xxx − 3g1 (f2f1)x + 3g2
(
f 2

1

)
x

(44)

f2t = f2xxx + 3g2 (f1f2)x − 3g1
(
f 2

2

)
x

(45)

g1t = g1xxx + 3f1 (g1g2)x − 3f2
(
g2

1

)
x

(46)

g2t = g2xxx − 3f2 (g1g2)x + 3f1
(
g2

2

)
x
. (47)

This system of equations can be considered as the vector generalization of the modified
Korteweg–de Vries equation. Now we can investigate different reductions of equations (44)–
(47) to much simpler equations. For example, by assuming that

g1 = f1 = f2 g2 = 0 (48)

we obtain the usual modified Korteweg–de Vries equation.
To finish this section let us note that the superfermionic method discussed in this section

allows us to obtain some extension of the usual system of equations by incorporating
anticommuting functions, but we do not change the usual multicomponentKP hierarchy.
We show in the next sections that superbosonic or mixed ways of supersymmetrizations
generalize our usual multicomponentKP hierarchy in the class of the usual commuting
functions.

5. The superbosonic approach

We now assume that the components of the vector supermultipletsF andG are superbosons
and can be expressed as

Fi = f 1
i + θ1ζ

1
i + θ2ζ

2
i + θ2θ1f

2
i (49)

Gi = g1
i + θ1η

1
i + θ2η

2
i + θ2θ1g

2
i (50)

whereζ ji and ηji are Grassmann-valued functions whilef ji , gji are the usual commuting
functions. In order to find the proper Lax operator in this case we assume the following
gradation on the functions

deg
(
f 1
i

) = 0 deg
(
ζ
j

i

)
= 0.5 deg

(
f 2
i

) = 1

deg
(
g1
i

) = 1 deg
(
η
j

i

)
= 1.5 deg

(
g2
i

) = 2 .
(51)

Note that it is also possible to assume symmetrical gradation in which we replacef → g,
ζ → η, but we will not consider such a possibility because we obtain the same information
as in the case considered.

We postulate the Lax operator exactly as in (22) and, interestingly, in this case we obtain
the same flows, where in contrast to (23)F andG are now superbosons. Therefore, they
have different expansions in the components. Let us consider more carefully two particular
cases (k = 1) of these flows. The second flow is

d

dt
F = Fxx −G2F 3 + 2F (D1D2GF) (52)

d

dt
G = −Gxx +G3F 2 − 2G(D1D2GF) . (53)
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This is the extended supersymmetric nonlinear Schrödinger equation considered in [48].
The third flow is

d

dt
F = Fxxx + 3Fx (D1D2GF)+ 3F (D1D2GFx)− 3F 2G2Fx (54)

d

dt
G = Gxxx + 3Gx (D1D2GF)+ 3G(D1D2GxF)− 3F 2G2Gx. (55)

From the last equation it follows that forF = −1, our equations reduce to the
supersymmetric Korteweg–de Vries equation. As is known, there are three different
generalizations of the extended supersymmetricKdV equation which have a Lax
representation [27–29, 42, 46] and this can be written down compactly as

d

dt
G = (−Gxx + 3G(D1D2G)+ 1

2(α − 1)
(D1D2G

2
) + αG3

)
x
. (56)

Here α is just a free parameter which enumerates these three different cases. Our case
corresponds toα = 1, after rescaling the time and transformingG into −G. In [46]
the author considered the non-standard Lax representations for this equation. Here, as a
byproduct of our analysis we obtained the usual Lax representation for this equation which
can be connected with the extended supersymmetricAKNS approach. Indeed, our Lax
operator in this case takes the form

L = ∂ − ∂−1D1D2G (57)

with the following flow:

Lt =
[(
L3

)
+ , L

]
. (58)

Unfortunately, similar to the superfermionic case considered in section 4, we have not found
the bi-Hamiltonian structure of this equation.

6. The superfermionic and superbosonic approach

We are now able to consider the mixed approach to the construction of theSUSY

multicomponentKP hierarchy. Therefore we now consider the followingSUSY Lax operator:

L = ∂ +
k∑
i=1

Fi∂
−1D1D2Gi +

m∑
j=1

Bj∂
−1D1D2Cj (59)

whereF andG are now vector superfermions with the expansions (21), (22), whileB andC
are superbosons with the expansions (49), (50). Using the same technique as in the previous
sections we computed the second and third flows, but the final formulae are complicated.
Hence we only present the second flow, which can be written down as

d

dt
Fi = Fixx − FiZ + 2

k∑
l=1

Fl (D1D2GlFi)+ 2
m∑
j=1

Bj
(D1D2CjFi

)
(60)

d

dt
Bj = Bjxx − BjZ + 2

k∑
l=1

Fl
(D1D2GlBj

) + 2
m∑
s=1

Bs
(D1D2CsBj

)
(61)

d

dt
Gi = −Gixx +GiZ − 2

k∑
l=1

Gl (D1D2GiFl)− 2
m∑
j=1

Cj
(D1D2GiBj

)
(62)
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d

dt
Cj = −Cjxx + CjZ − 2

k∑
l=1

Gl

(D1D2CjFl
) − 2

m∑
s=1

Cs
(D1D2CjBs

)
(63)

where

Z =
( k∑
l=1

FiGi +
m∑
j=1

BjCj

)2

. (64)

As we can see, the last system of equations describes a huge class of interacting fields.
In some sense, it describes the interaction of the superfermions with the superbosons.

7. Concluding remarks

We have constructed the extended supersymmetric version of the multicomponentKP

hierarchy in three different ways. We obtained a new class of integrable equations for
which we were able to construct the Lax operator and showed that they are Hamiltonian
equations. Moreover, due to the existence of the Lax operator, we obtained an infinite
number of conserved currents for our generalizations.

In soliton theory, in order to prove the involution of the conserved currents, we utilize
the recursion operator. Magri [53] has shown that such a recursion operator can be
constructed if we know the bi-Hamiltonian structure. However, in our case we cannot
find such a bi-Hamiltonian structure. It does not mean that our system does not possess the
recursion operator, nor that it is not completely integrable. An excellent example of this
situation, where we do not know the bi-Hamiltonian structure but do know the recursion
operator, is the Burgers equation [55]. Therefore, it seems reasonable that if we wish to
prove the commutativity of the conservation laws we should try quite different methods of
factorization of the recursion operator by the bi-Hamiltonian operators. Moreover, to prove
the commutativity of the conservation laws, it is not necessary to have a bi-Hamiltonian
formulation: an argument based on the Lax formalism is also possible [59, 27].
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