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Abstract. We describe three different approaches to the extentled @) supersymmetrization

of the multicomponenkp hierarchy. In the first one we utilize only superfermions while in the
second only superbosons and in the third superbosons as well as superfermions. It is shown that
many soliton equations can be embedded in the supersymmetry theory by using the first approach
even if we do not change these equations in the bosonic limit of the supersymmetry. In the
second or third approach we obtain a generalization of the soliton equations in the bosonic limit
which remains in the class of the usual commuting functions. As a byproduct of our analysis
we prove that for the first procedure the bosonic part of the one-component supersynmetric
hierarchy coincides with the usual classical two-compomerttierarchy.

1. Introduction

Integrable Hamiltonian systems occupy an important place in diverse branches of theoretical
physics as exactly solvable models of fundamental physical phenomena ranging from
nonlinear hydrodynamics to string theory [1-3]. The general Kadomtsev—Petviashvilli
(kP) system [4, 5] is &1 + 1)-dimensional integrable model containing an infinite number

of fields. In the Sato approach [6-8], thke hierarchy is described by the isospectral
deformations of the eigenvalue problem¥ = Ay for the pseudodifferential operator

L =3 + Up0~1 4 U3d~—2 which is given by

L, =[B,, L] 1)

wheren = 2,3, ... and B, is the differential part of the microdifferential operatb¥. If
we require thatl satisfies the additional condition that = B,, n > 2 then the hierarchy
of equations given by (1) are reduced to the hierarchylof 1)-dimensional integrable
systems called the-reducedkp hierarchy. For example, the Korteweg—de Vries equation
and the Boussinesq equation belong to the two-reduced and three-redubétarchies,
respectively.

On the other hand, a new type of reduction has recently been proposed in a series of
articles, which reduces marig + 1)-dimensional integrable systems(b+ 1)-dimensional
integrable systems [9-15]. For example, by assuming Ehsatisfies the constraints

L" =B, +q0 ' %)

we can obtain the so-callgddconstrainedp hierarchy. Interestingly, the one-constrained
KP hierarchy coincides with th@kNs hierarchy, and the two-constrainee hierarchy
coincides with the Yajima—Oikawa [16] hierarchy. Theconstrainedkp hierarchy was
shown to possess Lax pairs, recursion operators and bi-Hamiltonian structures [15].
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However, this classification does not exhaust the known generalizations afpthe
hierarchies. In this paper we consider two different generalizations okrh@erarchies.

In the next section we describe the so-called multicompomenhierarchy and in the
succeeding sections we consider the extended supersymmetrization of the multicomponent
KP hierarchies.

The idea of using extended supersymmenysgy) for the generalization of the soliton
equations appeared almost in parallel to the usagsusfr in the quantum field theory
[17, 18]. The main idea ofusyY is to treat boson and fermion operators equally. The first
results, concerned the construction of classical field theories with fermionic and bosonic
fields depending on time and one space variable, can be found in [19-22]. In many cases,
the addition of fermion fields does not guarantee that the final theory becaraemvariant.
Therefore this method was named the fermionic extension in order to distinguish it from
the fully susy method.

In order to get asusy theory we have to add to a system lfbosonic equations
kN fermions andk(N — 1) boson fieldsk = 1,2,..., N = 1,2,...) in such a way
that the final theory becomesJsy invariant. Interestingly enough, it appeared that during
the supersymmetrizations, some typisaisy effects (compared with the classical theory)
occurred. We mention a few of them: the non-uniqueness of the roots fautheLax
operator [36, 40], the lack of bosonic reduction to the classical equations [35] and the
occurence of non-local conservation laws [49, 50]. These effects rely strongly on the
descriptions of the generalized classical systems of equations which we would like to
supersymmetrize.

From the soliton point of view we can distinguish two important classes of the
supersymmetric equations: the non-extendad £ 1) and extended N > 1) cases.
Consideration of the extended case may imply new bosonic equations whose properties
need further investigation. This may be viewed as a bonus, but this extended case is in
no way more fundamental than the non-extended one. Indeed, as we show in this paper, it
is possible to construct such an extended superymmetric equation which does not contain
any new information in the bosonic sector compared with the original non-supersymmetric
equation. We carry out the supersymmetrization of the one-compamehterarchy in
two different ways. We show that despite using superfermions in the first approach for
the supersymmetrization of the one-componemtierarchy, the bosonic sector coincides
with the usual classical two-componet# hierarchy. Interestingly, the bosonic part of the
SusY Lax pair of the one-componemP hierarchy is a matrix-valued operator, in contrast
to the scalar Lax operator in the classical case. Therefore we can claim that we also
supersymmetrized the two-componedtt hierarchy without any new information in the
bosonic sector. We show that in the second case, where we use superbosons, we extend
our system to the new bosonic system.

The paper is organized as follows. In section 2 we describe the multicomprpent
hierarchy. Section 3 contains an introduction to the supersymmetrization of this hierarchy
which is developed in the sections that follow. In section 4 we describe the superfermionic
approach, while in section 5 we describe the superbosonic approach. We use superfermions
as well as superbosons in section 6 in the supersymmetrization of our multicomp@nent
hierarchy in order to demonstrate the third (mixed) possibility. Section 7 contains concluding
remarks.

All calculations presented in this paper have been obtained by extensive application of
the symbolic computation languagebucE
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2. The multicomponentkp hierarchy

The multicomponenkp hierarchy was introduced by Sidorenko and Strampp [14], and is
a straightforward generalization of the scalar case. This is a hierarchy associated with the
following Lax operator:

Ly=3"4u, 20" %+ +uo+ Z‘]ia_lri 3
u=1

The corresponding flows can be constructed by means of the fractional power
method [5]. Forn = 1, one has the multicomponenkNs hierarchy, which includes
the coupled nonlinear Sdbdinger equation [51] as an example. o= 2 andn = 3 one
has the multicomponent Yajima—Oikawa [16] and Melnikov [52] hierarchies, respectively.
We consider first the multicomponerkNs hierarchy, which is given by

L=+ a0 @
i=1
where the flows are

Ly=[(t9, . L] (5)

The bi-Hamiltonian structure of these equations has been widely discussed in the
literature recently [14, 51, 52] and it has the following representation:

3Hk 1 SH/(
Gy = B~ = B'—— (6)
q 8q
whereq = (q1,92, -+ -, qu, F1, 72, ..., 1) and
o 1
BO — 7
(% o) ™
where/ is them x m identity matrix. B has [54] the form
Bl — B%l B%Z (8)
By B,
where theB;  (n, k = 1, 2) arem x m matrices with the elements
B%lz {q,-&‘lqj +qj8_lqi} B%ZZ [(8 — Zq58_1r5>8ij —qia_lrj} (9)
s=1
(B},)* = —Bj; By, = {rd trj +r07 '} (10)
and x denotes Hermitian conjugation. In the special case 1 we obtain
a1 d—2q971
gi_ ( 24074 2q07"r (11)
3 —2rd g 2rd~1r

Interestingly, this Hamiltonian operator can be considered as the outcome of the
Dirac reduction of the Hamiltonian operator connected with g2, C) Kac—Moody
algebra [39].

The HamiltoniansH; may be computed from

H; = % Res(L") (12)

where Res denotes the coefficient standing inatheterm.
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For the subsequent discussion let us explicitly present equations (6) for the two-
componenkp hierarchy in two particular cases.
For k = 2 these equations are in the form

qi, = qixx + qu Zq‘vrs (13)
i=1

ri,=_rixx_2riZQSrs- (14)
i=1

This is a vector generalization of the nonlinear Sctimger equation first considered in [49].
Fork =3

qi, = Yixxx + 36]1 Z qsxls + 3qwc Z qsts (15)
s=1 s=1

Ti, = Fixxx +3ri2qsrsx +3rix2qsrs, (16)
s=1 s=1

These equations can be further restricted to the known soliton equation. Indeed, assuming
thatm = 1 we obtain the result that equations (12), (13) reduce to the usual nonlinear
Schibdinger equation, while equations (14), (15) for = r reduce to the modified
Korteweg—de Vries equation or fer= 1 to the Korteweg—de Vries equation.

3. The extended supersymmetrization of the multicomponenkp hierarchy

The basic objects in the supersymmetric analysis are the superfield and the supersymmetric
derivative. We will deal with the so-called extend&d= 2 supersymmetry for which the
superfields are superfermions or superbosons that, in additioratalz, depend upon two
anticommuting variableg); and6,, (0201 = —06165, 912 = 922 = 0). Their Taylor expansion

with respect to thé's is

@ (x,01,02) = w(x) + 0181(x) + 0282(x) + O2011(x) (17)

where the fieldsv, u, are to be interpreted as the boson (fermion) fields for the superboson
(superfermion) field:1, ¢, and as the fermions (bosons) for the superboson (superfermion)
respectively. The superderivatives are defined as

Dy, = 0, + 010 D, = 0p, + 620 (18)
with the properties
Dy;D1+D1D; =0 D =D5=0. (19)

Below we shall use the following notation(D; F) denotes the outcome of the action
of the superderivative on the superfiell while D; F denotes the action itself of the
superderivative on the superfiekd

The principal problem in the supersymmetrization of soliton equations can be formulated
as follows: if we know the evolution equation for the classical functibrand its
(bi-)Hamiltonian structure or its Lax pair, how can we obtain the evolution equation on
the supermultipletd which contains the classical functiar? This problem has its own
history, and at the moment we have no unique solution. We can distinguish three different
methods for its supersymmetrization, namely the algebraic, geometric and direct methods.
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In the first two cases we are looking for the symmetry group of the given equation and
then we replace this group by the correspondéugy group. As a final product we are
able to obtain thesusy generalization of the given equation. Their classification into the
algebraic or geometric approach is connected with the kind of symmetry that appears at
the classical level. For example, if our classical equation can be described in terms of the
geometrical object, then the simple exchange of the classical symmetry group of this object
onto thesusy partner justifies the term geometric. In the algebraic case, we are looking
for the symmetry group of this equation without any reference to its geometrical origin.
This strategy can be applied to the so-called hidden symmetry, as in the case of the Toda
lattice [56], for example.

These methods have both advantages and disadvantages. For example, we sometimes
obtain only the fermionic extensions of the given equations [44, 56]. In the case of the
extended supersymmetric Korteweg—de Vries equation we have three differensidighy
extensions; however, only one of them fits these two classifications [26-28, 31].

It seems that the most difficult problem in these approaches is the explanation of why
a priori a susy extension of the classical system of equations should be connected with
the susy extension of the classical symmetry of these equations. For these reasons we
prefer to use the direct approach in which we simply replace all objects which appear in
the evolution equation by all possible supermultiplets and superderivatives in such a way
as to conserve the gradations of the equation. This is a highly non-unique procedure, and
we obtain many different possibilities. However, this arbitrariness can be restricted if in
addition we investigate its super-bi-Hamiltonian structure or try to find its supersymmetric
Lax pair. This method has been successful in many cases [34, 35, 40-48]. We utilize this
method in what follows.

Let us now start trying to find the Lax operator for the multicomponsusy
KP hierarchy. The direct method suggests that we assume Ithaepends on the
vector supermultiplets, G, its supersymmetric derivatives and on the derivative and
superderivatives in such a way that finally it has the gradation 1. Therefore we postulate
that the Lax pair is an operator in the form

L=1L1L(@,Dy, Dy F,G). (20)

In order to specify this form we have to assume the gradations of the supermulfiplets
and G. However, we quickly recognize that we encounter three different possibilities of
the gradations of’, G:

(i) All F, G are superfermions with the gradation 1/2.

(i) Al F, G are superbosons with the following gradatiof: has 0 whileG has 1 (or
symmetrically).

(iii) A mixture of both previous possibilities: in other words some of theand G are
superbosons and the rest are superfermions.

In the following sections we investigate these possibilities in greater detail.

4. The superfermionic approach

We now assume that the components of the vectors supermultipleend G are
superfermions which can be written down as

Fi =gt +0Lf1 + 02 f7 + 00187 (21)

G; = n} + 018} + 0287 + 020117 (22)
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where f/, ¢f are the usual classical functions whii, n; are Grassmann-valued functions.
We choose the Lax operator in such a way that it contains all possible combinations of
‘variables’ in (20), in such a manner that each term has gradation 1. Then using the
symbolic languag&EeDUCE we verified that the following operator:

k
L=0+) F-9"' Dy D;-G (23)
i=1
generates the extended supersymmetric multicompagremierarchy. Indeed, its second
flow is

k k 2
F, = Fix +2)_ F, (D1D;G,Fy) — F; (Z FG) (24)
s=1 s=1
k k 2
Gi, = Gixx +2)_ G, (D1D2GiFy) + G (Z F, Gs> (25)
s=1 s=1

while the third is

k
Fiy = Fine +3) { (P1D2G; Fix) + (D1D2G; Fy) Fi

~
=

>~

— Y [(D1G;F) (D1GF) Fj + (D2G; F)) (D2G, F;) F; ] } - 3F,.Z  (26)

j=1
k
+ Z (D1G; F}) (D1Gi F)) G, + (D2G;) (D2G; F) Gl} —3GiZ (27)
=1
where
k
7 = Z F:G,F;G;. (28)
i,j=1

Let us now discuss several particular cases of equations (24)—(27% +ot, equations
(24), (25) reduce to

F, =F,. + 2F (D1D,GF) (29)
G, = -G, — 2G (DiD,GF) . (30)

In the components, using (21), (22), we obtain the result that equations (29), (30) are
equivalent to

o= 20t (n'eP + fre? - 7Y (31)
fh=rk =20t (g%t — 2P+ 2 (P + nPct + e — 28 (32)

fE=ra+2ct (g%t = M)+ 22 (P + Pt + g% — £ (33)
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tr=c2 —2ct ('t +2r (g%t - MY,

+2f% (g%t — 2N, + 2% (et + g% — f%Y) (34)
= -t — 20t (0%t + e — f7eh) (35)
g = —gr + 20t (g%t — fnY), — 28t (n* P+ Pt + 18P - fPY) (36)
gf=—gi — 2" (g%t — fMh), —28° (n'c* + nPct + g7 — fPgY) (37)
e = —nb + 20t (n'et),, — 28 (¢t — £,

—2g% (g%t — f2nt), + 20° (n'c® + 8% — f28Y). (38)

As we can see, this system of equations can be interpreted as the extended
supersymmetric nonlinear Sdulinger equation, which has been extensively discussed
recently [36—41, 48]. The bosonic part (in which all fermion fields vanish) gives us
equations (7) formm = 2 with the following identifications:

ff=a1 =g q¢'=-rn ¢=n (39)
Interestingly, our Lax operator in the bosonic limit for= 1 does not reduce to the scalar
Lax pair (4). In our case, it has a matrix form

d+ q18*1r1 q1371r2
( 2071 3+ 6123_1r2> '
In this way, we have shown that our one-component extended supersymmetric
hierarchy in the bosonic sector is equivalent to the usual two-comporetierarchy.
Moreover, in this bosonic sector, our equations constitute the bi-Hamiltonian structure given
by (6)—(11), but we are not able to find its supersymmetric bi-Hamiltonian counterparts. As
shown in section 3, it was possible using the Dirac reduction technique withZtk& C)
Kac—Moody algebra to obtain the Hamiltonian operator for Alr@is hierarchy. In the
supersymmetric case the situation is more complicated. Indeed it was shown in [58] that it
is possible to construct the chiral version of tie= 2 susy SL(2, C) Kac—-Moody algebra.
However, this chiral version cannot be applied to our framework, because we do not use
chiral fields. Moreover, the application of the direct method to the supersymmetrization
of equation (11) or to theSL(2, C) Kac—Moody algebra does not give us the correct
solution, a fact we have checked using the symbolic computation progemmacCE (see
also [30, 40, 48]).
On the other hand, our equations are Hamiltonian equations which can be written as
S Hy

F 0 I SF
(), = (5 o) om @
G/, -1 0 S Hy
5G
whereF = (Fy, Fa, ..., F)', G = (G1, G2, ..., G)" and[ is ak x k identity matrix. The
HamiltoniansH;, can be computed by using equation (12) in which Res now denotes the

coefficient standing in the 1D, D, term.
Let us now discuss equations (26), (27) fo= 1. In this case they reduce to

F; = Frux + 3[(D1D2GFy) F + (D1D2GF) Fy] (42)

(40)

Gl = Gxxx + 3[(D1D2Gx F) G+ (D1D2GF) Gx] (43)
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with the following bosonic sector:

fu = Fro — 381 (f2f1), + 382 (£7), (44)
for = focex + 382 (f1f2), — 381 (f3), (45)
81 = 81exx + 3f1(8182), — 3£2(82), (46)
82 = g2exx — 312(8182), + 311 (83). - (47)

This system of equations can be considered as the vector generalization of the modified
Korteweg—de Vries equation. Now we can investigate different reductions of equations (44)—
(47) to much simpler equations. For example, by assuming that

g1=fi=f2 g2=0 (48)

we obtain the usual modified Korteweg—de Vries equation.

To finish this section let us note that the superfermionic method discussed in this section
allows us to obtain some extension of the usual system of equations by incorporating
anticommuting functions, but we do not change the usual multicompaeiierarchy.

We show in the next sections that superbosonic or mixed ways of supersymmetrizations
generalize our usual multicomponeki hierarchy in the class of the usual commuting
functions.

5. The superbosonic approach

We now assume that the components of the vector supermultiplatsl G are superbosons
and can be expressed as

Fy = 1+ 005t + 0287 + 0201 f7 (49)
G; = gt + 010} 4 021 + 020182 (50)

where{ij and n,f are Grassmann-valued functions Wh}flé, gij are the usual commuting
functions. In order to find the proper Lax operator in this case we assume the following
gradation on the functions

deg(f') =0 deg(ci’) =05 deg(fl.z) =1

deg(gl) =1 deg(;ﬂ) =15 deg(g?) = 2.

Note that it is also possible to assume symmetrical gradation in which we replaeeg,
¢ — n, but we will not consider such a possibility because we obtain the same information
as in the case considered.

We postulate the Lax operator exactly as in (22) and, interestingly, in this case we obtain
the same flows, where in contrast to (2B)and G are now superbosons. Therefore, they
have different expansions in the components. Let us consider more carefully two particular
cases K = 1) of these flows. The second flow is

(51)

d

g F=Fe- G2F3 + 2F (D1D,GF) (52)
d 32

—G = —G, + G3F? — 2G (D1 D,GF). (53)

dr
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This is the extended supersymmetric nonlinear 8dimger equation considered in [48].
The third flow is

d

g F=Fect 3F, (D1D,GF) + 3F (D1D>;G Fy) — 3F%G?F, (54)

d

g ¢ =Gt 3G, (D1D2GF) + 3G (D1D2G, F) — 3F2G?G,. (55)
From the last equation it follows that foFF = -1, our equations reduce to the

supersymmetric Korteweg—de Vries equation. As is known, there are three different
generalizations of the extended supersymmetity equation which have a Lax
representation [27—-29, 42, 46] and this can be written down compactly as

%G = (=G + 3G (D1D2G) + 3(a — 1) (D1D2G?) + aG?)
Here « is just a free parameter which enumerates these three different cases. Our case
corresponds tax = 1, after rescaling the time and transformidg into —G. In [46]

the author considered the non-standard Lax representations for this equation. Here, as a
byproduct of our analysis we obtained the usual Lax representation for this equation which
can be connected with the extended supersymmeties approach. Indeed, our Lax
operator in this case takes the form

(56)

X

L=3-3"'DD,G (57)
with the following flow:
L=3),.L]. (58)

Unfortunately, similar to the superfermionic case considered in section 4, we have not found
the bi-Hamiltonian structure of this equation.

6. The superfermionic and superbosonic approach

We are now able to consider the mixed approach to the construction oflube
multicomponenkp hierarchy. Therefore we now consider the followsigsy Lax operator:

k m

L=0+) F™'DiDG;i+ Y Bjd"*D1DoC; (59)

i=1 j=1
whereF andG are now vector superfermions with the expansions (21), (22), wthdedC
are superbosons with the expansions (49), (50). Using the same technique as in the previous
sections we computed the second and third flows, but the final formulae are complicated.
Hence we only present the second flow, which can be written down as

k m
%Fi = Fixx — FiZ+2)  Fi (D1D2G/F;) +2 ) B; (D1D2C; F) (60)
=1 j=1
d k m
G B =B BiZ+2 > Fi (D1D2GB;) + 2 B, (D1D>C, B)) (61)

=1 s=1

d k m
4,01 = —Gi + GiZ =23 GI(DiD2GiFy) =2 C; (P1D2Gi By) (62)
=1 j=1
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d k m

36 ="Cn+GZ- 2> Gy (DyDoCiFy) — 2 C, (DyDoC;By) (63)
=1 s=1

where

k m 2
Z= (;EG,»JFZ;BJ-C,) : (64)
= j=

As we can see, the last system of equations describes a huge class of interacting fields.
In some sense, it describes the interaction of the superfermions with the superbosons.

7. Concluding remarks

We have constructed the extended supersymmetric version of the multicompament
hierarchy in three different ways. We obtained a new class of integrable equations for
which we were able to construct the Lax operator and showed that they are Hamiltonian
equations. Moreover, due to the existence of the Lax operator, we obtained an infinite
number of conserved currents for our generalizations.

In soliton theory, in order to prove the involution of the conserved currents, we utilize
the recursion operator. Magri [53] has shown that such a recursion operator can be
constructed if we know the bi-Hamiltonian structure. However, in our case we cannot
find such a bi-Hamiltonian structure. It does not mean that our system does not possess the
recursion operator, nor that it is not completely integrable. An excellent example of this
situation, where we do not know the bi-Hamiltonian structure but do know the recursion
operator, is the Burgers equation [55]. Therefore, it seems reasonable that if we wish to
prove the commutativity of the conservation laws we should try quite different methods of
factorization of the recursion operator by the bi-Hamiltonian operators. Moreover, to prove
the commutativity of the conservation laws, it is not necessary to have a bi-Hamiltonian
formulation: an argument based on the Lax formalism is also possible [59, 27].

References

L

Faddeev L and Takhtajan L 1987amiltonian Methods in the Theory of SolitoBerlin: Springer)
Das A 1989Integrable Modelg(Singapore: World Scientific)
Ablowitz M and Segur H 198Bolitons and the Inverse Scattering Transfofhiladelphia, PA: SIAM)
Polyakov A 1989Fields, Strings and Critical Phenomeraa E Brezin and J Zinn-Justin (Amsterdam: North-
Holland)
[3] Gross D and Migdal A 199Mucl. Phys.B 340333
Brezin E and Kazakov V 199Bhys. Lett.236B 144
[4] Manakov S, Novikov S, Pitaevski L and Zakharov V 1986liton Theory: The Inverse Proble(iMoscow:
Nauka)
[5] Dickey L A 1991 Soliton Equations and Hamiltonian Syste(@ngapore: World Scientific)
[6] Date E, Jimbo M, Kashiwara M and Miwa T 198%onlinear Integrable Systems—Classical and Quantum
Theoryed M Jimbo and T Miwa (Singapore: World Scientific) p 39
[7] Jimbo M and Miwa T 1983 ubl. RIMS Kyoto Univl9 943
[8] Ohta Y, Satsuma J, Takahashi D and Tokihiro T 1$88g. Theor. Phys. Suppd4 219
[9] Konopelchenk B G and Strampp W 199hverse Problems L17
[10] Konopelchenko B G, Sidorenko J and Strampp W 188ys. Lett.157A 17
[11] Sidorenko J and Strampp W 199%iverse Problem& L37
[12] Cheng Y and Li Y 1991Phys. Lett157A 22
[13] Cheng Y 1992). Math. Phys33 3774
[14] Sidorenko J and Strampp W 1993Math. Phys34 1429
[15] Oevel W and Strampp W 199Bommun. Math. Phyd.57 51

2



[16]
(17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
(28]
[29]
[30]
(31]
(32]
(33]
(34]
[35]
(36]
(37]
(38]
(39]
(40]
(41]

[42]
(43]
(44]
(45]
(46]
(47]
(48]
(49]
(50]
(5]
(52]
(53]
[54]

[55]
[56]
[57]
[58]
[59]

Supersymmetrization of the multicomponemthierarchy 1291

Yajima N and Oikawa M 197®rogr. Theor. Phys56 1719

Wess J and Bagger J 19&ipersymmetry and Supergravi{grinceton, NJ: Princeton University Press)

Ferrara S and TayftaJ G 1985Introduction to SupergravitfMoscow) (in Russian)

Kupershmidt B 198Elements of Superintegrable SystefP®rdrecht: Kluwer)

Chaichian M and Kulish P 197Bhys. Lett.18B 413

R. D’Auria and Sciuto S 1980lucl. PhysB 171189

Gurses M and Oguz O 1985hys. Lett.108A 437

Manin Y and Radul R 198&ommun. Math. Phy€8 65

Morosi C and Pizzochero L 199Bommun. Math. Phy4.58 267

Morosi C and Pizzochero L 1993 Math. Phys35 2397

Morosi C and Pizzochero L 1994 A fully supersymmetmias theoryPreprint Dipartimento di Matematica,
Politecnico di Milano (1998Commun. Math. Physto appear)

Mathieu P 1988). Math. Phys29 2499

Laberg C A and Mathieu P 198Bhys. Lett215B 718

Labelle P and Mathieu P 1991 Math. Phys32 923

Chaichian M and Lukierski J 198Fhys. Lett.183B 169

Inami T and Kanno H 199Commun. Math. Phy4.36 519

Nam S K 1989Int. J. Mod. Phys4 4083

Hiutu K and Nemeschansky D 19%od. Phys. Lett6A 3179

Yung C M 1993Phys. Lett.309B 75

Ivanov E and Krivons S 199Phys. Lett291B 63

Kulish P 1985Lett. Math. Phys10 87

Roelok G H M andKersten P H M 1992 J. Math. Phys33 2185

Brunelii J C and Das A 1995. Math. Phys36 268

Toppan F 1993nt. J. Mod. PhysA 10 895

Krivonos S and Sorin A 199Fhys. Lett.357B 94

Krivonos S, Sorin A and Toppan F 1995 On the supes-equation and its relation withV = 2 superkdv
within coset approacPRreprint hep-th/9504138

Oevel W and Popowicz Z 199Commun. Math. Phy439 441

Popowicz Z 1986). Phys. A: Math. Genl9 1495

Popowicz Z 1990). Math. A: Math. Gen23 1127

Popowicz Z 1993hys. Lett.319B 478

Popowicz Z 1993 hys. Lett174A 411

Popowicz Z 1994nt. J. Mod. Phys9 2001

Popowicz Z 1994Phys. Lett.194A 375

Kersten P H M 1988 Phys. Lett.134A 25

Dargis P and Mathieu P 1993hys. Lettl76A 67

Manakov S 197450v. Phys.—JETRB8 248

Melnikv V K 1987 Commun. Math. Phyd.12 639

Liu Q P 1995 Hamiltonian structure of multicomponent constraipduerarchyPreprint hep-th/9502076

Aratyn H, Goms J F and Zimerma A H 1994 Affine Lie algeraic origin of constrainec hierarchies
Preprint hep-th/9408104). Math. Phys.to appear)

Magri F 1978J. Math. Phys19 1156

Olshanetsky M 1978 ommun. Math. PhyS0 1975

Oevel W and Strampp W 1983ommun. Math. Phyd.57 51

Hull C and Spence P 199hys. Lett.241B 357

Wilson G 1979Math. Proc. Camb. Phil. So&6 131



